The fenpropimorph resistance gene FEN2 from Saccharomyces cerevisiae encodes a plasma membrane H+-pantothenate symporter.

نویسندگان

  • J Stolz
  • N Sauer
چکیده

The product of the FEN2 gene of Saccharomyces cerevisiae has previously been described as a protein conferring sensitivity to the antifungal agent fenpropimorph. Fen2p was postulated to act as a common regulator of carbon and nitrogen catabolite repression and of amino acid and ergosterol biosynthesis. In this paper, we present experimental evidence characterizing Fen2p as a plasma membrane-localized transporter for the vitamin pantothenate. The high affinity transport system (Km = 3.5 microM) is sensitive to uncouplers, suggesting a H+-pantothenate cotransport. Pantothenate transport rates in yeast are modulated by extracellular pantothenate, being maximal at low pantothenate concentrations. It is demonstrated that beta-alanine can suppress the growth defect of FEN2 wild-type and fen2 mutant cells on pantothenate-free medium. Evidence is presented that beta-alanine is transported by the general amino acid permease Gap1p. The relation among pantothenate transport, nitrogen catabolite repression, and sensitivity to the antifungal agent fenpropimorph is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A member of the sugar transporter family, Stl1p is the glycerol/H+ symporter in Saccharomyces cerevisiae.

Glycerol and other polyols are used as osmoprotectants by many organisms. Several yeasts and other fungi can take up glycerol by proton symport. To identify genes involved in active glycerol uptake in Saccharomyces cerevisiae we screened a deletion mutant collection comprising 321 genes encoding proteins with 6 or more predicted transmembrane domains for impaired growth on glycerol medium. Dele...

متن کامل

Isolation and characterization of the plasma membrane biotin transporter from Schizosaccharomyces pombe.

The fission yeast Schizosaccharomyces pombe is auxotrophic for biotin (vitamin H) and growth depends on biotin uptake over the plasma membrane. Here a biotin transport mutant of Saccharomyces cerevisiae is used to identify the vht1(+) gene encoding the Schizosaccharomyces pombe plasma membrane transport protein for biotin. SpVht1p belongs to the family of allantoate transporters and has only li...

متن کامل

AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis.

This paper describes the molecular, kinetic, and physiological characterization of AtSTP6, a new member of the Arabidopsis H(+)/monosaccharide transporter family. The AtSTP6 gene (At3g05960) is interrupted by two introns and encodes a protein of 507 amino acids containing 12 putative transmembrane helices. Expression in yeast (Saccharomyces cerevisiae) shows that AtSTP6 is a high-affinity (K(m)...

متن کامل

Cell division defects of Schizosaccharomyces pombe liz1- mutants are caused by defects in pantothenate uptake.

The liz1+ gene of the fission yeast Schizosaccharomyces pombe was previously identified by complementation of a mutation that causes abnormal mitosis when ribonucleotide reductase is inhibited. Liz1 has similarity to transport proteins from Saccharomyces cerevisiae, but the potential substrate and its connection to the cell division cycle remain elusive. We report here that liz1+ encodes a plas...

متن کامل

Phenotypic reversal of the btn1 defects in yeast by chloroquine: a yeast model for Batten disease.

BTN1 of Saccharomyces cerevisiae encodes an ortholog of CLN3, the human Batten disease gene. We have reported previously that deletion of BTN1, btn1-Delta, resulted in a pH-dependent resistance to D-(-)-threo-2-amino-1-[p-nitrophenyl]-1,3-propanediol (ANP). This phenotype was caused by btn1-Delta strains having an elevated ability to acidify growth medium through an elevated activity of the pla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 26  شماره 

صفحات  -

تاریخ انتشار 1999